Remediation of Pool Dominated Trichloroethene Source Zones in Heterogeneous Porous Media by Cosmetic Surfactant Flooding

Author:

Abstract

<p>A series of flow-cell experiments were performed to investigate the performance of cosmetic rhamnolipid surfactant flooding on the relationship between source zone mass removal and mass flux reduction for pool-dominated DNAPL TCE source zones in heterogeneous porous media. The results were also compared to those of water-flood control experiments to assess the surfactant enhanced flushing efficacy. The flooding experiments were performed for silica sand and natural calcareous soil representing two different degrees of physical heterogeneity. The result from the flow-cell experiments showed that higher than 97% of TCE mass was removed during rhamnolipid flooding for both porous media scenarios. Although, rhamnolipid flooding experiment results showed successful remediation performance, DNAPL TCE dissolution and rhamnolipid-enhanced dissolution in heterogeneous porous media system exhibited multi-step mass-flux reduction/mass-removal behavior due to the presence of less hydraulically-accessible pool-dominated TCE source zone. However, mass removal and mass-flux reduction relationships for rhamnolipid flushing cases exhibited more ideal removal behavior, indicating the more efficient remediation performance compared to water flooding alone. For all cases, the later stage of mass removal was controlled by the more poorly-accessible mass associated with pool-dominated source zones. The results of this study revealed the impact of non-uniformity of the flow-field and effect of enhanced-solubilization agent on mass removal and mass-flux reduction behavior for DNAPL source zones in saturated porous media</p>

Publisher

University of the Aegean

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3