Synthesis of Multi Wall Carbon Nanotubes based on zirconium oxide as supported material and its application as nanosorbent for copper ions removal

Author:

Abstract

<p>Water pollution caused by various toxic contaminants has become one of the world's most serious issues. Nanotechnology has received a lot of attention in recent decades, and various nanomaterials for water remediation have been developed. For this purpose, MWCNTs were directly synthesized using a chemical vapor deposition process, which was then purified and functionalized using an acid treatment. At various temperatures, the synthesis of MWCNTs by chemical vapor deposition (CVD) of acetylene is investigated. The wet impregnation method is used to prepare catalysts using Fe/Co as a catalyst in the presence of zirconium oxide and aluminum oxide as support materials. Zirconium oxide was found to be a good support material for the deposition of high-purity MWCNTs with high yield 88.9 %. The effect of growing time and temperature on carbon yield was investigated, and it was discovered that the amount of MWCNTs deposited increased as reaction time increased, with the optimum temperature for the reaction being 700 0C. The effect of temperature on the crystal size of synthesized MWCNTs was investigated using XRD, and it was found that the crystallite size declined as the temperature goes up. SEM and TEM were used to examine the structure and purity of synthesized MWCNTs at various temperatures. The MWCNTs that were synthesized have a web-like network structure, a homogeneous distribution on the catalyst surface, and a smooth surface. The prepared CNTs were purified by chemical oxidation, and the effect of acid treatment on the surface of the CNTs was investigated using XRD and FTIR. The functionalized CNTs were used for copper ion adsorption, achieving an adsorption potential of 238.09 mg/g and a high regeneration efficiency.</p>

Publisher

University of the Aegean

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3