Evaluation of antibacterial activity using Aerva lanata and Millettia pinnata leaf extracts mediated ZnO and Cu-doped ZnO nanoparticles

Author:

Abstract

<p>A green synthesis using a simple precipitation method produced zinc oxide (ZnO), leaf extractions of zinc oxide as Aerva lanata (Al-ZnO) and Millettia pinnata (Mp-ZnO), copper-doped Al-CZnO and Mp-CZnO nanoparticles (NAPs). They were characterized for their functional group, structural, antibacterial, and luminescence properties. The grown NAPs were examined by Ultraviolet-visible (UV-Vis), Photoluminescence (PL), Fourier Transform-Infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and antibacterial activity. The XRD analysis confirms that all NAPs have a hexagonal structure and no impurity phases other than Cu. In consequence of this, Cu ion has been successfully incorporated into the standard ZnO structure. The calculated crystalline size through the XRD pattern of pure ZnO, Al-ZnO, Mp-ZnO, Al-CZnO, and Mp-CZnO NAPs and the average grain size were 81.37, 52.08, 63.24, 37.54, and 30.71 nm, respectively. The optical absorption spectra show that adding Cu reduces the band gap. FTIR is used to assess the functional group and chemical interaction of leaf extraction and Cu-doped ZnO at various peaks. In addition, its functional groups are observed to correspond to the ZnO bands in all the samples. The microstructure analysis of SEM confirms that all the NAPs are agglomerated by adding the dopant, which turns into a particle-like structure. The antibacterial activity of the NAPs against Escherichia coli was measured using the agar well diffusion technique, and the optimum zone of inhibition (ZOI) was found to be 21 mm. Overall, the obtained results revealed that the Mp-CZnO NAPs is a novel and efficient bacterial pathogens present in the aqueous medium. Hence, it is a good representation for future biomedical applications.</p>

Publisher

University of the Aegean

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3