Advanced deep learning method for Aerial image segmentation of landscape changes in pre-and post-disaster scenarios

Author:

Abstract

<p>The precise analysis of conditions in the landscape before and aftermath of the disaster is a mandatory challenge in aerial image landscape monitoring. The change in patterns of landscape, damaged pathways, and damaged areas will have a major impact without monitoring and redevelopment. Therefore, semantic segmentation of the landscape is required in order to analyze the changes and avoid other risks in pre-and post-disaster scenarios. To address these queries a deep learning-based landscape monitoring method is presented in this work. A Gated Shaped Convolution Neural Network is utilized for the semantic segmentation of the aerial landscape images. Initially the aerial image undergoes pre-processing with the process of dilation and GSCNN emphasize the shaped and boundary masks of the affected landscape. To choose the best possible pathways and solutions for development the GSCNN undergoes the particle swarm optimization. In the present study, the proposed PSO-GSCNN is evaluated by comparing the accuracy, precision, and recall of the proposed method with Restricted Boltzmann Machines (RBMs), Convolutional Neural Networks, and Fuse-Net segmentation methods. In comparison with conventional RSM, CNN, and Fuse-Net, the accuracy rate of the model is 97.65%, the precision rate is 98.21%, and the recall rate is 97.23%. This technique has achieved 97.66% accuracy, 97% precision, and 96% recall, all higher than the existing methods.</p>

Publisher

University of the Aegean

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3