CO2 Sequestration by Mineral Carbonation: A Review

Author:

Abstract

<p>The mineral sequestration, one of the methods of CO2 sequestration, is considered advantageous, as it not only facilitates permanent and leakage free storage of CO2 but also obviates the need for regular monitoring. Mineral sequestration involves the dissolution of minerals and subsequently carbonation of dissolved minerals. In the direct mineral sequestration all the processes occur within a single reactor, whereas in the cases of indirect mineral sequestration, they take place in separate reactors. The main aim of the present study is to investigate the efficacy of these mineral sequestration methods and examine their suitability for industrial application and ensuring environmental friendliness. For this purpose, literature pertaining to these methods was extensively reviewed, and observations made by several researchers were collected, collated and compared based on the various parameters such as reaction pathways, reaction kinetics and cost of the process. The process cost was found to depend on the type of the process, process parameters, input materials and additives. It was noted that the direct mineral sequestration suffers from the sluggish reaction kinetics, thereby becomes economically unviable. The success of direct mineral sequestration process is yet to be achieved despite research carried out for several years. The problem of sluggish reaction kinetics was overcome by using multi-steps indirect carbonation routes, where separate reactors were used for dissolution and precipitation processes. The indirect sequestration method was noted to be most efficient as it offered several advantages such as improved reaction kinetics and recovery of the market value of by-product due to the better quality control of the product. Hence, based on interpretation of an extensive review of literature it can be concluded that the indirect mineral sequestration may be a viable option to carry out the CO2 sequestration and may be proved as a guiding light to ensure the clean environment for future generation.</p>

Publisher

University of the Aegean

Subject

General Environmental Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3