Acid and Ultrasound Assisted Modification of Boron Enrichment Process Waste and Using for Methylene Blue Removal from Aqueous Solutions

Author:

Abstract

In this study, raw boron enrichment waste was treated with hydrochloric acid and ultrasound at 35-kHz frequency for 60 minutes. To optimize the adsorption conditions for removal of methylene blue (MB) from synthetic wastewaters using raw boron enrichment waste (BEW), acid modified boron enrichment waste (HBEW) and ultrasound modified BEW (UBEW) by adsorption process and to compare the adsorption efficiency of chemical and ultrasonic modifications of BEW were aimed. The optimum adsorption conditions were determined economically and eco-friendly aspect and MB removal percents were found as 80%, 80% and 92% at optimum conditions for BEW, HBEW and UBEW, respectively. The maximum regression coefficient values were obtained as 0.911, 0.998 and 0.984 for BEW, HBEW and UBEW, respectively at Langmuir isotherm model. The adsorption rate was fitted well to pseudo-second order kinetics according to a good correlation coefficient. The adsorption of MB onto adsorbents studied is spontaneous in nature and feasible because of negative ∆G values. The results indicated that the boron enrichment process waste could be a suitable adsorbent for removal of MB from aqueous solution. The maximum adsorption capacities were equal to about 107,0 mg/g, 160,7 mg/g and 145,3 mg/g for BEW, HBEW and UBEW adsorbents at 298 K, respectively. The maximum dye removal percent was achieved for UBEW as 92% and ultrasound assisted modification was found more efficient method compared with acidic modification for MB removal.

Publisher

University of the Aegean

Subject

General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3