Abstract
In order to solve the shortcomings of the traditional genetic algorithm in solving the problem of logistics distribution path, a modified genetic algorithm is proposed to solve the Vehicle Routing Problem with Time Windows (VRPTW) under the condition of vehicle load and time window. In the crossover process, the best genes can be preserved to reduce the inferior individuals resulting from the crossover, thus improving the convergence speed of the algorithm. A mutation operation is designed to ensure the population diversity of the algorithm, reduce the generation of infeasible solutions, and improve the global search ability of the algorithm. The algorithm is implemented on Matlab 2016a. The example shows that the improved genetic algorithm reduces the transportation cost by about 10% compared with the traditional genetic algorithm and can jump out of the local convergence and obtain the optimal solution, thus providing a more reasonable vehicle route.
Publisher
EdiUNS - Editorial de la Universidad Nacional del Sur
Subject
Mechanical Engineering,General Chemical Engineering,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献