COMPARISON OF A NOVEL VACUUM-COMBINED INFRARED AND HOT-AIR CONVECTION METHODS FOR DRYING OF DEVECI (PYRUS COMMUNIS L.) PEAR SLICES

Author:

Fatma Coskun Topuz ,Ugurlu S.,Bakkalbasi E.

Abstract

In this study, the quality characteristics of pear slices dried in vacuum-combined infrared dryer equipped with a two-way infrared heating (100-300 W infrared power) and convectional dryer (40-70 °C) were comparatively investigated. Increasing infrared power in vacuum-combined infrared dryer decreased the drying time.  However, the differences between vacuum pressures (100 mmHg and 250 mmHg) were generally negligible. Drying process at 200 and 300 W IP under vacuum was approximately 2- and 2.5-times shorter than conventionally drying at 55 and 70 °C, respectively. Although a very low amount of HMF in dried pear slices by the conventional dryer was detected only at 70 °C after 300 min, high amounts of HMF was detected at 300 W after 120 minutes. The rehydration rate of pear slice dried with vacuum-combined infrared dryer was higher than those of pear slice dried with conventional dryer. Syringic, chlorogenic and ellagic acids were identified in dried pear samples. Chlorogenic acid was found to be the most among phenolic compounds in dried pears. While the ellagic acid was not detected in fresh pear, dried pears had ellagic acid content (8.14-16.93 mg/kg d.m.). It was found that total phenolic content, ABTS and DPPH values of dried pears by vacuum-combined infrared dryer was lower than those of dried sample by conventional dryer. The pear slices dried at 300W and 250 mmHg had the highest sensory scores. The results show that the vacuum-combined infrared drying provided a shorter drying time and better sensory quality for dried pear compared to conventional drying.

Publisher

EdiUNS - Editorial de la Universidad Nacional del Sur

Subject

Mechanical Engineering,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3