Epigenetic drugs: a new frontier in the treatment of heart failure

Author:

Aitbaev K. A.1ORCID,Murkamilov I. T.2ORCID,Murkamilova Zh. A.3ORCID,Fomin V. V.4ORCID,Kudaibergenova I. O.5ORCID,Yusupova T. F.6ORCID,Yusupov F. A.6ORCID

Affiliation:

1. Research Institute of Molecular Biology and Medicine

2. I.K. Akhunbaev Kyrgyz State Medical Academy; Kyrgyz Russian Slavic University

3. Kyrgyz Russian Slavic University

4. I.M. Sechenov First Moscow State Medical University (Sechenov University)

5. I.K. Akhunbaev Kyrgyz State Medical Academy

6. Osh State University

Abstract

Uncovering the secrets of genome flexibility not only contributed to the development of research in this area, but also served as an impetus for the development of new treatments for human diseases. A better understanding of the biology of chromatin (DNA/histone complexes) and non-coding RNAs (ncRNAs) has enabled the development of epigenetic (epi) preparations capable of modulating transcriptional programs associated with cardiovascular disease. This is especially true in heart failure, where epigenetic mechanisms have been shown to underlie the development of several pathological processes such as left ventricular hypertrophy, fibrosis, cardiomyocyte apoptosis, and microvascular dysfunction. Targeting epigenetic signals may represent a promising approach, especially in patients with heart failure with preserved ejection fraction (HFpEF), where the prognosis remains poor and effective treatments are not yet available. Under these conditions, epigenetics can be used to develop individualized therapeutic approaches, paving the way for personalized medicine. Although the beneficial effects of epi-drugs are gaining more attention, the number of epigenetic compounds used in clinical practice remains low, suggesting the need to develop more selective epi-drugs. In this review, we present a list of new promising epi-drugs for the treatment of cardiovascular diseases, with a focus mainly on HFpEF. The therapeutic effect of these drugs is due to the impact on at least one of the three main epigenetic mechanisms: DNA methylation, histone modification, and non-coding RNA.

Publisher

Intermedservice Ltd

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3