A Clustering-Anonymity Approach for Trajectory Data Publishing Considering both Distance and Direction

Author:

Jiang Huo-wen1,Hu Ke-kun2

Affiliation:

1. College of Mathematics and Computer Science, Jiangxi Science and Technology Normal University, Nanchang, China

2. State Key Laboratory of High-end Server and Storage Technology, Inspur Group Co., Ltd., Jinan, China

Abstract

Trajectory data contains rich spatio-temporal information of moving objects. Directly publishing it for mining and analysis will result in severe privacy disclosure problems. Most existing clustering-anonymity methods cluster trajectories according to either distance- or direction-based similarities, leading to a high information loss. To bridge this gap, in this paper, we present a clustering-anonymity approach considering both these two types of similarities. As trajectories may not be synchronized, we first design a trajectory synchronization algorithm to synchronize them. Then, two similarity metrics between trajectories are quantitatively defined, followed by a comprehensive one. Furthermore, a clustering-anonymity algorithm for trajectory data publishing with privacy-preserving is proposed. It groups trajectories into clusters according to the comprehensive similarity metric. These clusters are finally anonymized. Experimental results show that our algorithm is effective in preserving privacy with low information loss.

Publisher

Faculty of Electrical Engineering and Computing, Univ. of Zagreb

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3