Affiliation:
1. Dalian Maritime University, Dalian, China
Abstract
Fluid simulation is one of the most complex tasks in three-dimensional simulation. Specifically, in the case of oil spills at sea, the oil film constantly interacts and is influenced by the environment, thus making its composition and properties change over time. In this paper, we tackle this problem by using both Lehr's spreading model and Hoult's drifting model to build the oil spill physical model. Unlike previous studies that only applied the Poisson disk algorithm to static and solid objects, we applied it in a three-dimensional space to divide the oil film into fluid particles. The track of oil particles under the influence of waves, wind, and currents is rendered by the Unity3D tool with C# programming language, which vividly and realistically simulates the collision of oil particles on the ocean scene with obstacles such as buoys and small islands. The result of this research can be used to predict oil spill direction, thus providing the solution to respond and minimize the damage caused by oil spills at sea. We also discuss some improvements to our model by using the Marching cube algorithm to render the Metaball model.
Publisher
Faculty of Electrical Engineering and Computing, Univ. of Zagreb
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献