Using Poisson Disk Sampling to Render Oil Particles at Sea

Author:

Do Vancuong1,Ren Hongxiang1

Affiliation:

1. Dalian Maritime University, Dalian, China

Abstract

Fluid simulation is one of the most complex tasks in three-dimensional simulation. Specifically, in the case of oil spills at sea, the oil film constantly interacts and is influenced by the environment, thus making its composition and properties change over time. In this paper, we tackle this problem by using both Lehr's spreading model and Hoult's drifting model to build the oil spill physical model. Unlike previous studies that only applied the Poisson disk algorithm to static and solid objects, we applied it in a three-dimensional space to divide the oil film into fluid particles. The track of oil particles under the influence of waves, wind, and currents is rendered by the Unity3D tool with C# programming language, which vividly and realistically simulates the collision of oil particles on the ocean scene with obstacles such as buoys and small islands. The result of this research can be used to predict oil spill direction, thus providing the solution to respond and minimize the damage caused by oil spills at sea. We also discuss some improvements to our model by using the Marching cube algorithm to render the Metaball model.

Publisher

Faculty of Electrical Engineering and Computing, Univ. of Zagreb

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SIMULATION OF RISK MINIMIZATION IN CASE OF POLLUTION ON MARINE AREAS;International Journal of Modern Manufacturing Technologies;2022-12-20

2. An Improved Particle Number-Based Oil Spill Model Using Implicit Viscosity in Marine Simulator;Mathematical Problems in Engineering;2021-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3