Leveraging Large Language Models for Information Retrieval from NEPA Documents

Author:

Wei Zibu,Luo Yang,Xu Guokun,Li Zhengning,Yin Yibo,Xie Ying

Abstract

This paper explores the application of large language models (LLMs) to efficiently and accurately extract relevant information from National Environmental Policy Act (NEPA) documents, specifically focusing on environmental impact statements (EIS). NEPA mandates federal agencies to evaluate the environmental effects of their proposed actions, and EIS documents are essential for this process. However, these documents are often lengthy and complex, making manual information extraction time-consuming and error-prone. We address this challenge by leveraging advanced natural language processing techniques and the newly introduced NEPAQuAD1.0 dataset, which contains 1,450 question-answer pairs generated under human supervision. Our approach involves fine-tuning the Meta-Llama-3.1-8B-Instruct model on this dataset. The results demonstrate significant improvements in retrieval accuracy and efficiency compared to baseline models, highlighting the potential of LLMs to streamline the environmental review process and provide valuable insights for environmental policy analysis. This work contributes to the broader field of natural language processing by offering a robust method for handling complex, domain-specific information retrieval tasks.

Publisher

Century Science Publishing Co

Reference32 articles.

1. Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). "Attention is All You Need." In Advances in Neural Information Processing Systems (pp. 5998-6008).

2. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805.

3. Brown, T., Mann, B., Ryder, N., et al. (2020). "Language Models are Few-Shot Learners." In Advances in Neural Information Processing Systems (Vol. 33, pp. 1877-1901).

4. Radford, A., Wu, J., Child, R., et al. (2019). "Language Models are Unsupervised Multitask Learners." OpenAI blog, 1(8), 9.

5. Raffel, C., Shazeer, N., Roberts, A., et al. (2020). "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer." Journal of Machine Learning Research, 21(140), 1-67.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3