Deep Learning for Precise Robot Position Prediction in Logistics

Author:

Che Chang,Liu Bo,Li Shulin,Huang Jiaxin,Hu Hao

Abstract

This study presents an interdisciplinary investigation at the nexus of mechanical engineering and computer science, aimed at advancing the field of logistics automation. In response to the escalating demands of global cargo transportation, the integration of these disciplines assumes paramount importance. Conducted within the domain of Dortmund University of Technology’s Material Flow and Warehousing Chair, this research focuses on the precise control of robots, a task contingent on accurate positional information. Leveraging a controlled internal logistics precinct, the study delves into the transformation of raw sensor data, comprising accelerometers, gyroscopes, and magnetometers, into precise position predictions. This process entails meticulous data preprocessing, encompassing synchronization and calibration procedures, yielding crucial parameters such as absolute velocity and accelerations along both parallel and perpendicular axes. The study employs deep learning, specifically a 2D Convolutional Neural Network (2D-CNN), for predictive modeling. This architecture excels in extracting intricate spatial features from sensor data. Training is conducted under the guidance of an Asymmetric Gaussian loss function, custom-tailored to accommodate the idiosyn- crasies of real-world sensor data. The results evince the efficacy of this approach, evidenced by remarkably low mean squared errors in predicting robot positions. Beyond its immediate applications in logistics automation, this research underscores the potential of interdisciplinary collaboration in addressing complex sensor data challenges.

Publisher

Century Science Publishing Co

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Integration of Generative Artificial Intelligence and Computer Vision in Industrial Robotic Arms;International Journal of Computer Science and Information Technology;2024-05-28

2. Survival Prediction Across Diverse Cancer Types Using Neural Networks;Proceedings of the 2024 7th International Conference on Machine Vision and Applications;2024-03-12

3. Automatic Driving Lane Change Safety Prediction Model Based on LSTM;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

4. Construction and Application of Artificial Intelligence Crowdsourcing Map Based on Multi-Track GPS Data;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

5. The Fusion of Deep Reinforcement Learning and Edge Computing for Real-time Monitoring and Control Optimization in IoT Environments;2024 3rd International Conference on Energy and Power Engineering, Control Engineering (EPECE);2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3