Author:
Hariyanti Latifah Rahmi,Widjaja Sri Lilijanti,Hidayah Dwi
Abstract
Background Down syndrome (DS) is a chromosomal disorder due to trisomy 21 that may involve congenital heart disease (CHD). Pulmonary hypertension (PH) may be present in DS with and without CHD. TNF-α is a cytokine involved in the pathogenesis of inflammation in PH.
Objective To determine the association between TNF-α and the risk of PH in children with DS with and without congenital heart disease.
Methods This observational study was conducted in DS children aged two months to five years who visited the outpatient clinic of a regional referral hospital in Indonesia. Subjects underwent echocardiography and were classified into four groups (CHD-PH, CHD-no PH, no CHD-PH, no CHD-no PH). Serum TNF-α was measured in all subjects. We used the ANOVA test to compare mean TNF-α between the groups and to determine the optimal TNF-α cut-off point. We compared the risk of PH in subjects with TNF-α above and below the cut-off point.
Results We included 36 DS children in this study. Mean TNF-α in the CHD-PH, CHD-no PH, no CHD-PH, and no CHD-no PH groups was 2,564.44 (SD 177.00) pg/mL, 2,112.89 (SD 382.00) pg/mL, 2,211.56 (SD 330.70) pg/mL, and 1,118.89 (SD 1056.65) pg/mL, respectively (p<0.001). The optimal TNF-α cut-off point was 2,318 pg/mL. DS children with TNF-α ≥2,318 pg/mL had a higher risk of CHD (RR=2.6; 95%CI 1.17 to 5.78; p=0.008) and PH (RR=3.5; 95%CI 1.43 to 8.60; p=0.001).
Conclusions DS children with CHD accompanied by PH have significantly higher TNF-α levels than those without PH and those without CHD. In children with DS, an elevated TNF-α level (≥2,318 pg/mL) is associated with a higher risk of CHD and PH.
Publisher
Paediatrica Indonesiana - Indonesian Pediatric Society
Subject
Pediatrics, Perinatology and Child Health
Reference24 articles.
1. 1. King P, Tulloh R. Management of pulmonary hypertension and Down syndrome. Int J Clin Pract Suppl. 2011;174:8-13. DOI: 10.1111/j.1742-1241.2011.02823.x.
2. 2. Beghetti M, Rudzinski A, Zhang M. Efficacy and safety of oral sildenafil in children with Down syndrome and pulmonary hypertension. BMC Cardiovasc Disord. 2017;17:177. DOI: 10.1186/s12872-017-0569-3.
3. 3. Weerackody RP, Welsh DJ, Wadsworth RM, Peacock AJ. Inhibition of p38 MAPK reverses hypoxia-induced pulmonary artery endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2009;296:1312-21. DOI:10.1152/ajpheart.00977.2008.
4. 4. Hartopo AB, Anggrahini DW, Emoto N, Dinarti LK. The BMPR2, ALK1 and ENG genes mutation in congenital heart disease- associated pulmonary artery hypertension. Acta Cardiol Indones. 2019;5:145-9. DOI: 10.22146/aci.50222.
5. 5. Morrell NW, Bloch DB, ten Dijke P, Goumans MJ, Hata A, Smith J, et al. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol. 2016;13:106-20. DOI:10.1038/nrcardio.2015.156.