Investigation of Machine Learning Techniques to Aid in the Diagnosis of Neurodegenerative Diseases

Author:

Félix Juliana Paula,Nascimento Hugo A. D. do,Guimarães Nilza Nascimento

Abstract

The thesis summarized in this document introduces alternative, rapid, low-cost, and effective solutions, aided by machine learning techniques, to support the diagnosis and differentiation of neurodegenerative diseases (NDDs) such as Parkinson’s Disease, Huntington’s Disease, and Amyotrophic Lateral Sclerosis. These diseases, characterized by the progressive loss of neurons, have no cure, and diagnosis is predominantly clinical. By leveraging novel features extracted from gait signals through dynamic fluctuation analysis and harmonic distortion, the thesis achieves highly accurate results with specificity and sensitivity ranging from 96% to 100% for automatic NDD classification, serving as a diagnostic aid system. Furthermore, it presents and discusses an innovative approach to NDD diagnosis focused on the patient’s well-being, aiming to reduce examination duration and physical effort required for gait signal collection. These contributions represent innovations in the computational field with the potential to positively impact public health and enhance the quality of life of people with neurodegenerative diseases.

Publisher

Sociedade Brasileira de Computação (SBC)

Reference15 articles.

1. Abu-Faraj, Z. O., Harris, G. F., Smith, P. A., and Hassani, S. (1999). Human gait and clinical movement analysis. Wiley Encycl. of Electrical and Electro. Eng., pages 1–34.

2. Chagas, A. L., Bucci, G., Felix, J., Fonseca, A., Nascimento, H., and Soares, F. (2024). Avaliando a sobreamostragem de dados temporais de marcha no diagnóstico automático de doenças neurodegenerativas. In Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS), Goiânia, GO, Brazil, June 25–28, 2024, pages 1–12. SBC.

3. Erkkinen, M. G., Kim, M.-O., and Geschwind, M. D. (2018). Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 10(4):a033118.

4. Felix, J., Fonseca, A. U., Araújo, R., Nascimento, H., and Guimarães, N. (2022a). Classificação de Severidade da Doença de Parkinson Utilizando Sinais de Marcha e Aprendizado de Máquina. In IX Congresso Latino-Americano de Engenharia Biomédica (CLAIB 2022) e o XXVIII Congresso Brasileiro de Engenharia Biomédica (CBEB 2022), Florianópolis, SC, Brazil, October 24–28, 2022, pages 601–606. SBEB.

5. Felix, J., Fonseca, A. U., Nascimento, H., and Guimarães, N. (2022b). Rede Neural Multicamadas para Classificação de Doenças Neurodegenerativas a partir de Sinais de Marcha. In XXIV Congresso Brasileiro de Automática, pages 1354–1361. SBA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3