Investigation of Machine Learning Techniques to Aid in the Diagnosis of Neurodegenerative Diseases
Author:
Félix Juliana Paula,Nascimento Hugo A. D. do,Guimarães Nilza Nascimento
Abstract
The thesis summarized in this document introduces alternative, rapid, low-cost, and effective solutions, aided by machine learning techniques, to support the diagnosis and differentiation of neurodegenerative diseases (NDDs) such as Parkinson’s Disease, Huntington’s Disease, and Amyotrophic Lateral Sclerosis. These diseases, characterized by the progressive loss of neurons, have no cure, and diagnosis is predominantly clinical. By leveraging novel features extracted from gait signals through dynamic fluctuation analysis and harmonic distortion, the thesis achieves highly accurate results with specificity and sensitivity ranging from 96% to 100% for automatic NDD classification, serving as a diagnostic aid system. Furthermore, it presents and discusses an innovative approach to NDD diagnosis focused on the patient’s well-being, aiming to reduce examination duration and physical effort required for gait signal collection. These contributions represent innovations in the computational field with the potential to positively impact public health and enhance the quality of life of people with neurodegenerative diseases.
Publisher
Sociedade Brasileira de Computação (SBC)
Reference15 articles.
1. Abu-Faraj, Z. O., Harris, G. F., Smith, P. A., and Hassani, S. (1999). Human gait and clinical movement analysis. Wiley Encycl. of Electrical and Electro. Eng., pages 1–34. 2. Chagas, A. L., Bucci, G., Felix, J., Fonseca, A., Nascimento, H., and Soares, F. (2024). Avaliando a sobreamostragem de dados temporais de marcha no diagnóstico automático de doenças neurodegenerativas. In Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS), Goiânia, GO, Brazil, June 25–28, 2024, pages 1–12. SBC. 3. Erkkinen, M. G., Kim, M.-O., and Geschwind, M. D. (2018). Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 10(4):a033118. 4. Felix, J., Fonseca, A. U., Araújo, R., Nascimento, H., and Guimarães, N. (2022a). Classificação de Severidade da Doença de Parkinson Utilizando Sinais de Marcha e Aprendizado de Máquina. In IX Congresso Latino-Americano de Engenharia Biomédica (CLAIB 2022) e o XXVIII Congresso Brasileiro de Engenharia Biomédica (CBEB 2022), Florianópolis, SC, Brazil, October 24–28, 2022, pages 601–606. SBEB. 5. Felix, J., Fonseca, A. U., Nascimento, H., and Guimarães, N. (2022b). Rede Neural Multicamadas para Classificação de Doenças Neurodegenerativas a partir de Sinais de Marcha. In XXIV Congresso Brasileiro de Automática, pages 1354–1361. SBA.
|
|