Identifying Finest Machine Learning Algorithm for Climate Data Imputation in the State of Minas Gerais, Brazil

Author:

O. Bayma Lucas,A. Pereira Marconi

Abstract

Climate prediction is a relevant activity for humanity and, for the success of the climate forecast, a good historical database is necessary. However, because of several factors, large historical data gaps are found at different meteorological stations, and studies to determine such missing weather values are still scarce. This work describes a study of a combination of several machine learning techniques to determine missing climatic values. This study extends our previous work, producing a computational framework, formed by three different methods: neural networks, regression bagged trees and random forest. Deep data analysis and a statistical study is conducted to compare these three methods. The study statistically demonstrated that the random forest technique was successful in obtaining missing climatic values for the state of Minas Gerais and can be widely used by the responsible agencies to improve their historical databases, consequently, their climate forecasts.

Publisher

Sociedade Brasileira de Computacao - SB

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3