Superpixel Generation by the Iterative Spanning Forest Using Object Information

Author:

Belém Felipe C.,Falcão Alexandre X.,Guimarães Silvio Jamil F.

Abstract

Superpixel segmentation methods aim to partition the image into homogeneous connected regions of pixels (i.e., superpixels) such that the union of its comprising superpixels precisely defines the objects of interest. However, the homogeneity criterion is often based solely on color, which, in certain conditions, might be insufficient for inferring the extension of the objects (e.g., low gradient regions). In this dissertation, we address such issue by incorporating prior object information — represented as monochromatic object saliency maps — into a state-of-the-art method, the Iterative Spanning Forest (ISF) framework, resulting in a novel framework named Object-based ISF (OISF). For a given saliency map, OISF-based methods are capable of increasing the superpixel resolution within the objects of interest, whilst permitting a higher adherence to the map’s borders, when color is insufficient for delineation. We compared our work with state-of-the-art methods, considering two classic superpixel segmentation metrics, in three datasets. Experimental results show that our approach presents effective object delineation with a significantly lower number of superpixels than the baselines, especially in terms of preventing superpixel leaking.

Publisher

Sociedade Brasileira de Computação

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3