Mining Experts from Source Code Analysis: An Empirical Evaluation

Author:

Oliveira Johnatan Alves,Viggiato Markos,Pinheiro Denis,Figueiredo Eduardo

Abstract

Modern software development increasingly depends on third-­party libraries to boost productivity and quality. This development is complex and requires specialists with knowledge in several technologies, such as the nowadays libraries. Such complexity turns it extremely challenging to deliver quality software, given the pressure. For this purpose, it is necessary to identify and hire qualified developers, to obtain a good team, both in open source and proprietary systems. For these reasons, enterprise and open source projects try to build teams composed of highly skilled developers in specific libraries. However, their identification may not be trivial. Despite this fact, we still lack procedures to assess developers skills in widely popular libraries. In this paper, we first argue that source code activities can identify software developers’ hard skills, such as library expertise. We then evaluate a mining­-based strategy to reduce the search space to identify library experts. To achieve our goal, we selected the 9 most popular Java libraries and 6 libraries for microservices (i.e., 15 libraries in total). We assessed the skills of more than 1.5 million developers in these libraries by analyzing their commits in more than 17 K Java projects on GitHub. We evaluated the results by applying two surveys with 158 developers. First, with 137 library expert candidates, they observed 63% precision for popular Java libraries’ used strategy. Second, we observe a precision of at least 71% for 21 library experts in microservices. These low precision values suggest space for further improvements in the evaluated strategy.

Publisher

Sociedade Brasileira de Computacao - SB

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of Project Description Inference Using Method Name Elements for Software Upcycling;2023 6th International Conference on Signal Processing and Information Security (ICSPIS);2023-11-08

2. CoopFinder: Finding Collaborators Based on Co–Changed Files;2022 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC);2022-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3