Advancing Chatbot Conversations: A Review of Knowledge Update Approaches

Author:

Da Costa Luis Antonio L. F.ORCID,Melchiades Mateus BegniniORCID,Girelli Valéria SolderaORCID,Colombelli FelipeORCID,Araújo Denis Andrei deORCID,Rigo Sandro JoséORCID,Ramos Gabriel de OliveiraORCID,Da Costa Cristiano AndréORCID,Righi Rodrigo da RosaORCID,Barbosa Jorge Luis VictóriaORCID

Abstract

Conversational systems like chatbots have emerged as powerful tools for automating interactive tasks traditionally confined to human involvement. Fundamental to chatbot functionality is their knowledge base, the foundation of their reasoning processes. A pivotal challenge resides in chatbots' innate incapacity to seamlessly integrate changes within their knowledge base, thereby hindering their ability to provide real-time responses. The increasing literature attention dedicated to effective knowledge base updates, which we term content update, underscores the significance of this topic. This work provides an overview of content update methodologies in the context of conversational agents. We delve into the state-of-the-art approaches for natural language understanding, such as language models and alike, which are essential for turning data into knowledge. Additionally, we discuss turning point strategies and primary resources, such as deep learning, which are crucial for supporting language models. As our principal contribution, we review and discuss the core techniques underpinning information extraction as well as knowledge base representation and update in the context of conversational agents.  

Publisher

Sociedade Brasileira de Computacao - SB

Reference98 articles.

1. (2024). Rasa. Available online [link] Accessed in: Accessed in: 16th July 2021.

2. Abidi, S. S. R. (2007). Healthcare knowledge management: The art of the possible. In K4CARE. DOI: 10.1007/978-3-540-78624-5_.

3. Ahmed, M. and Pathan, A.-S. K. (2018). Data analytics: concepts, techniques, and applications. Crc Press. Book.

4. Alammar, J. (2018). The illustrated transformer. Available online [link]Accesed in: 22th July 2021.

5. Bagwan, F., Phalnikar, R., and Desai, S. (2021). Artificially intelligent health chatbot using deep learning. In 2021 2nd International Conference for Emerging Technology (INCET), pages 1-5. DOI: 10.1109/INCET51464.2021.9456195.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3