Improving Direct Convolution through Tensor Slicing, Vectorized Packing and ISA Extensions

Author:

Ferrari Victor,Araujo Guido

Abstract

Convolution is one of the most computationally intensive machine learning model operations, usually solved by the traditional Im2Col + BLAS method. This work describes SConv: a novel direct-convolution algorithm to improve upon Im2Col + BLAS by introducing compile-time and execution time components to tile, vectorize and optimize the computation. SConv’s speed-up over an Im2Col + BLAS method based on current BLAS implementations for end-to-end machine-learning model inference is in the range of 11% – 27% for Intel x86 and 11% – 34% for IBM POWER10 architectures. The total convolution speedup for model inference is 13% – 28% on Intel x86 and 23% – 39% on IBM POWER10. SConv also outperforms oneDNN in 6 out of 7 models.

Publisher

Sociedade Brasileira de Computação - SBC

Reference25 articles.

1. Anderson, A., Vasudevan, A., Keane, C., and Gregg, D. (2020). High-performance low-memory lowering: Gemm-based algorithms for dnn convolution. In 2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pages 99–106.

2. Barrachina, S., Castelló, A., Dolz, M. F., Low, T. M., Martínez, H., Quintana-Ortí, E. S., Sridhar, U., and Tomás, A. E. (2023). Reformulating the direct convolution for high-performance deep learning inference on arm processors. Journal of Systems Architecture, 135:102806.

3. Chellapilla, K., Puri, S., and Simard, P. (2006). High Performance Convolutional Neural Networks for Document Processing. In Lorette, G., editor, Tenth International Workshop on Frontiers in Handwriting Recognition, La Baule (France). Université de Rennes 1, Suvisoft.

4. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J. M., Tran, J., Catanzaro, B., and Shelhamer, E. (2014). cudnn: Efficient primitives for deep learning. ArXiv, abs/1410.0759.

5. Cho, M. and Brand, D. (2017). Mec: Memory-efficient convolution for deep neural network. In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page 815–824. JMLR.org.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3