Author:
Menezes Richardson,Maia Helton
Abstract
Chess is one of the most researched domains in the annals of artificial intelligence. The main objective of this research is to develop a platform that can determine piece positioning during chess games. Digital image processing methods and real-time object detection (YOLO version 4) algorithms were used during computational development. The problem entails analyzing images captured during a chess game and determining the location of each square on the board, as well as the position of each piece in play. This procedure is repeated at each game turn, enabling the developed system to save and watch all piece moves during a game. The obtained results demonstrate the system’s reliability and feasibility.
Publisher
Sociedade Brasileira de Computação - SBC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning-Driven Object Detection of Chess Pieces for Precise Robotic Moves and Game Notation;2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI);2023-12-27