Evaluating the Potential of Federated Learning for Maize Leaf Disease Prediction

Author:

Antico Thalita Mendonça,Moreira Larissa F. Rodrigues,Moreira Rodrigo

Abstract

The diagnosis of diseases in food crops based on machine learning seemed satisfactory and suitable for use on a large scale. The Convolutional Neural Networks (CNNs) perform accurately in the disease prediction considering the image capture of the crop leaf, being extensively enhanced in the literature. These machine learning techniques fall short in data privacy, as they require sharing the data in the training process with a central server, disregarding competitive or regulatory concerns. Thus, Federated Learning (FL) aims to support distributed training to address recognized gaps in centralized training. As far as we know, this paper inaugurates the use and evaluation of FL applied in maize leaf diseases. We evaluated the performance of five CNNs trained under the distributed paradigm and measured their training time compared to the classification performance. In addition, we consider the suitability of distributed training considering the volume of network traffic and the number of parameters of each CNN. Our results indicate that FL potentially enhances data privacy in heterogeneous domains.

Publisher

Sociedade Brasileira de Computação - SBC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image-based crop disease detection with federated learning;Scientific Reports;2023-11-06

2. A Federated Learning CNN Approach for Tomato Leaf Disease with Severity Analysis;2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2023-08-23

3. Agriculture Breakthrough: Federated ConvNets for Unprecedented Maize Disease Detection and Severity Estimation;2023 International Conference on Circuit Power and Computing Technologies (ICCPCT);2023-08-10

4. Collaborative Intelligence in AgriTech: Federated Learning CNN for Bean Leaf Disease Classification;2023 World Conference on Communication & Computing (WCONF);2023-07-14

5. Image-based crop disease detection with federated learning;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3