Housing Prices Prediction with a Deep Learning and Random Forest Ensemble

Author:

Afonso Bruno,Melo Luckeciano,Oliveira Willian,Sousa Samuel,Berton Lilian

Abstract

The development of a housing prices prediction model can assist a house seller or a real estate agent to make better-informed decisions based on house price valuation. Only a few works report the use of machine learning (ML) algorithms to predict the values of properties in Brazil. This study analyzes a dataset composed of 12,223,582 housing advertisements, collected from Brazilian websites from 2015 to 2018. Each instance comprises twenty-four features of five different data types: integer, date, string, float, and image. To predict the property prices, we ensemble two different ML architectures, based on Random Forest (RF) and Recurrent Neural Networks (RNN). This study demonstrates that enriching the dataset and combining different ML approaches can be a better alternative for prediction of housing prices in Brazil.

Publisher

Sociedade Brasileira de Computação - SBC

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Study of House Price Prediction Using Machine learning and Deep learning Techniques;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18

2. Predicting House Price Model : A Comprehensive Analysis with Random Forest and Decision Tree Method;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

3. A Proposal of Real Estate Valuation Prediction Method using Deep Learning-based Spatial Regression Analysis;The Journal of Korean Institute of Information Technology;2024-01-31

4. Enhancing Residential Real Estate Search with Classification Strategies Using Diffusion and CLIP;2024 IEEE International Conference on Consumer Electronics (ICCE);2024-01-06

5. An Ensemble Regression Model to Predict a Rent of House;2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3