An automatic method for prostate segmentation on 3D MRI scans using local phylogenetic indexes and XGBoost
Author:
Silva Giovanni L. F. da,Oliveira Francisco Y. C. de,Diniz João O. B.,Diniz Petterson S.,Quintanilha Darlan B. P.,Silva Aristófanes C.,Paiva Anselmo C. de,Cavalcanti Elton A. A. de
Abstract
The detection, diagnosis, and treatment of prostate cancer depends on the correct determination of the prostate anatomy. In current practice, the prostate segmentation is performed manually by a radiologist, which is extremely time-consuming that demands experience and concentration. Therefore, this paper proposes an automatic method for prostate segmentation on 3D magnetic resonance imaging scans using a superpixel technique, phylogenetic indexes, and an optimized XGBoost algorithm. The proposed method has been evaluated on the Prostate 3T and PROMISE12 databases presenting a dice similarity coefficient of 84.48% and a volumetric similarity of 95.91%, demonstrating the high-performance potential of the proposed method.
Publisher
Sociedade Brasileira de Computação - SBC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Diagnóstico de Tuberculose em Imagens de Radiografia utilizando CvT;Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2024);2024-06-25