1. Abhinav Nippani, Dongyue Li, H. J. H. N. K. H. R. Z. (2024). Graph neural networks for road safety modeling: Datasets and evaluations for accident analysis.
2. Albino, V., Berardi, U., and Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22:3–21.
3. Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V. F., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Çaglar Gülçehre, Song, H. F., Ballard, A. J., Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K. R., Nash, C., Langston, V., Dyer, C., Heess, N. M. O., Wierstra, D., Kohli, P., Botvinick, M. M., Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. ArXiv, abs/1806.01261.
4. Beineke, L. W. and Bagga, J. S. (2021). Line graphs and line digraphs. Developments in Mathematics.
5. Boeing, G. (2017). Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems, 65:126–139.