Regression Performance of Relational Fusion Networks on Urban Road Networks

Author:

Cervi Thales E.,Lüders Ricardo,Silva Thiago H.,Delgado Myriam R.

Abstract

Urban transportation planning in densely populated areas is a problem in constant need of efficient solutions. Graphs can represent urban street networks and be used to train algorithms, enriching decisions with information learned from structural and topological data of cities. Relational Fusion Networks (RFNs) are Graph Neural Networks specifically tailored for learning on road networks. This work explores the use of RFNs in estimating free-flow travel times and includes experiments on relevant cities from all continents. Results demonstrate the significance of fusion functions and city characteristics in both the learning process of RFNs on regression tasks and the capacity to extrapolate acquired knowledge to different cities.

Publisher

Sociedade Brasileira de Computação - SBC

Reference22 articles.

1. Abhinav Nippani, Dongyue Li, H. J. H. N. K. H. R. Z. (2024). Graph neural networks for road safety modeling: Datasets and evaluations for accident analysis.

2. Albino, V., Berardi, U., and Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22:3–21.

3. Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V. F., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Çaglar Gülçehre, Song, H. F., Ballard, A. J., Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K. R., Nash, C., Langston, V., Dyer, C., Heess, N. M. O., Wierstra, D., Kohli, P., Botvinick, M. M., Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. ArXiv, abs/1806.01261.

4. Beineke, L. W. and Bagga, J. S. (2021). Line graphs and line digraphs. Developments in Mathematics.

5. Boeing, G. (2017). Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems, 65:126–139.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3