Offensive Comments in the Brazilian Web: a dataset and baseline results

Author:

De Pelle Rogers Prates,Moreira Viviane P.

Abstract

Brazilian Web users are among the most active in social networks and very keen on interacting with others. Offensive comments, known as hate speech, have been plaguing online media and originating a number of lawsuits against companies which publish Web content. Given the massive number of user generated text published on a daily basis, manually filtering offensive comments becomes infeasible. The identification of offensive comments can be treated as a supervised classification task. In order to obtain a model to classify comments, an annotated dataset containing positive and negative examples is necessary. The lack of such a dataset in Portuguese, limits the development of detection approaches for this language. In this paper, we describe how we created annotated datasets of offensive comments for Portuguese by collecting news comments on the Brazilian Web. In addition, we provide classification results achieved by standard classification algorithms on these datasets which can serve as baseline for future work on this topic.

Publisher

Sociedade Brasileira de Computação - SBC

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable hate speech detection using LIME;International Journal of Speech Technology;2024-08-30

2. Abordagem Semi-Supervisionada para Anotação de Linguagem Tóxica;Anais do XIII Brazilian Workshop on Social Network Analysis and Mining (BraSNAM 2024);2024-07-21

3. Automatic hate speech detection in audio using machine learning algorithms;International Journal of Speech Technology;2024-06

4. A survey on multi-lingual offensive language detection;PeerJ Computer Science;2024-03-29

5. Reality television and the promotion of problematic behavior among cast members: a case study content analysis through the lens of feminist and media framing theories;Feminist Media Studies;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3