1. Abdulrahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., and Guizani, M. (2021). A survey on federated learning: The journey from centralized to distributed on-site learning and beyond. IEEE Internet of Things Journal, 8(7):5476–5497.
2. Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Fernandez-Marques, J., Gao, Y., Sani, L., Li, K. H., Parcollet, T., de Gusmão, P. P. B., et al. (2020). Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390.
3. Cho, Y. J., Wang, J., and Joshi, G. (2022). Towards understanding biased client selection in federated learning. In International Conference on Artificial Intelligence and Statistics, pages 10351–10375. PMLR.
4. Deng, Y., Lyu, F., Ren, J., Wu, H., Zhou, Y., Zhang, Y., and Shen, X. (2022). Auction: Automated and quality-aware client selection framework for efficient federated learning. IEEE Transactions on Parallel and Distributed Systems, 33(8):1996–2009.
5. Dennis, D. K., Li, T., and Smith, V. (2021). Heterogeneity for the win: One-shot federated clustering. In Meila, M. and Zhang, T., editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 2611–2620. PMLR.