Comparação de Métodos de Deep Learning Pré-Treinados da Biblioteca OpenCV para Detecção de Pessoas em Ambientes Internos

Author:

Andretta Jaskowiak Pablo,Vieira Filho Jesuino

Abstract

Sistemas de monitoramento baseados em câmeras são cada vez mais onipresentes em ambientes internos e externos. A existência de um sistema de monitoramento não garante, porém, que todas as informações coletadas sejam utilizadas e/ou analisadas. Quando uma interpretação das imagens é necessária, usualmente recorre-se à visão computacional. Neste contexto particular, métodos de Deep Learning têm recebido crescente atenção. De fato, apesar de seu desenvolvimento recente, alguns destes métodos estão disponı́veis em bibliotecas e pacotes de software de forma pré-treinada, permitindo sua aplicação com relativa facilidade. Neste trabalho diferentes métodos de Deep Learning disponı́veis na biblioteca OpenCV foram comparados para a detecção e contagem de pessoas em ambientes internos. Os métodos foram comparados quanto à sua precisão, revocação e tempo de detecção. Para a aplicação considerada, os resultados obtidos sugerem que o método YOLO (v3) apresenta um bom compromisso entre medida F1 e tempo de reconhecimento. A detecção precisa e rápida de pessoas pode vir a auxiliar futuramente, por exemplo, na estimação da carga térmica observada e consequente ajuste de sistemas de condicionamento de ar.  

Publisher

Sociedade Brasileira de Computacao - SB

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparisons of Neural Networks Using Computer Vision for Agricultural Automation;2023 15th IEEE International Conference on Industry Applications (INDUSCON);2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3