On Enhancing Network Throughput using Reinforcement Learning in Sliced Testbeds

Author:

Monteiro Daniel Pereira,Saar Lucas Nardelli de Freitas Botelho,Moreira Larissa Ferreira Rodrigues,Moreira Rodrigo

Abstract

Novel applications demand high throughput, low latency, and high reliability connectivity and still pose significant challenges to slicing orchestration architectures. The literature explores network slicing techniques that employ canonical methods, artificial intelligence, and combinatorial optimization to address errors and ensure throughput for network slice data plane. This paper introduces the Enhanced Mobile Broadband (eMBB)-Agent as a new approach that uses Reinforcement Learning (RL) in a vertical application to enhance network slicing throughput to fit Service-Level Agreements (SLAs). The eMBB-Agent analyzes application transmission variables and proposes actions within a discrete space to adjust the reception window using a Deep Q-Network (DQN). This paper also presents experimental results that examine the impact of factors such as the channel error rate, DQN model layers, and learning rate on model convergence and achieved throughput, providing insights on embedding intelligence in network slicing.

Publisher

Sociedade Brasileira de Computação - SBC

Reference15 articles.

1. Aripin, N. M., Zulkifli, T., and Radzi, N. A. M. (2023). Performance Analysis of 5G Network Slicing for Hospital of the Future. In 2023 IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE), pages 18–21.

2. Beig, E. F. G. M., Daneshjoo, P., Rezaei, S., Movassagh, A. A., Karimi, R., and Qin, Y. (2018). Mptcp throughput enhancement by q-learning for mobile devices. In 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 1171–1176, Conference. IEEE.

3. Brilhante, D. d. S., Manjarres, J. C., Moreira, R., de Oliveira Veiga, L., de Rezende, J. F., Müller, F., Klautau, A., Leonel Mendes, L., and P. de Figueiredo, F. A. (2023). A Literature Survey on AI-Aided Beamforming and Beam Management for 5G and 6G Systems. Sensors, 23(9).

4. Gawlowicz, P. and Zubow, A. (2018). ns3-gym: Extending openai gym for networking research. CoRR, abs/1810.03943.

5. Khan, B. S., Jangsher, S., Ahmed, A., and Al-Dweik, A. (2022). URLLC and eMBB in 5G Industrial IoT: A Survey. IEEE Open Journal of the Communications Society, 3:1134–1163.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3