An Exploratory Evaluation of Continuous Feedback to Enhance Machine Learning Code Smell Detection

Author:

Cruz Daniel,Santana Amanda,Figueiredo Eduardo

Abstract

Code smells are symptoms of bad design choices implemented on the source code. Several code smell detection tools and strategies have been proposed over the years, including the use of machine learning algorithms. However, we lack empirical evidence on how expert feedback could improve machine learning based detection of code smells. This paper aims to propose and evaluate a conceptual strategy to improve machine-learning detection of code smells by means of continuous feedback. To evaluate the strategy, we follow an exploratory evaluation design to compare results of the smell detection before and after feedback provided by a service - acting as a software expert. We focus on four code smells - God Class, Long Method, Feature Envy, and Refused Bequest - detected in 20 Java systems. As results, we observed that continuous feedback improves the performance of code smell detection. For the detection of the class-level code smells, God Class and Refused Bequest, we achieved an average improvement in terms of F1 of 0.13 and 0.58, respectively, after 50 iterations of feedback. For the method-level code smells, Long Method and Feature Envy, the improvements of F1 were 0.66 and 0.72, respectively.

Publisher

Sociedade Brasileira de Computação

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3