Author:
Veiga Rafael,Both Cristiano B.,Medeiros Iago,Rosário Denis,Cerqueira Eduardo
Abstract
A smartphone can collect behavioral data without requiring additional actions on the user’s part and without the need for additional hardware. In an active or continuous user authentication process, information from integrated sensors, such as touch, and gyroscope, is used to monitor the user continuously. These sensors can capture behavioral (touch patterns, accelerometer) or physiological (fingerprint, face) data of the user naturally interacting with the device. However, transferring data from multiple users’ mobile devices to a server is not recommended due to user data privacy concerns. This paper introduces an Federated Learning (FL) approach to define a user’s biometric behavior pattern for continuous user identification and authentication. We also evaluate whether FL can be helpful in behavioral biometrics. Evaluation results compare CNNs in different epochs using FL and a centralized method with low chances of wrong predictions in user identification by the gyroscope.
Publisher
Sociedade Brasileira de Computação - SBC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献