Abstract
The Controller Area Network (CAN) is the most pervasive in-vehiclenetwork technology in cars. However, since CAN was designed with no securityconcerns, solutions to mitigate cyber attacks on CAN networks have been pro-posed. Prior works have shown that detecting anomalies in the CAN networktraffic is a promising solution for increasing vehicle security. One of the mainchallenges in preventing a malicious CAN frame transmission is to be able todetect the anomaly before the end of the frame. This paper presents a real-timeanomaly-based Intrusion Detection System (IDS) capable of meeting this dead-line by using the Isolation Forest detection algorithm implemented in a hardwaredescription language. A true positive rate higher than 99% is achieved in testscenarios. The system requires less than 1μs to evaluate a frame’s payload, thusbeing able to detect the anomaly before the end of the frame.
Publisher
Sociedade Brasileira de Computação
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. In-Vehicle Network Anomaly Detection Using Extreme Gradient Boosting Machine;2022 11th Mediterranean Conference on Embedded Computing (MECO);2022-06-07