A Practical Digital Image Processing Course with morph.py

Author:

Zampirolli Francisco de AssisORCID,Borovina Josko João MarceloORCID,Teubl Fernando,Kurashima Celso SetsuoORCID

Abstract

Teaching Digital Imaging Processing (DIP) is challenging, primarily because of its mathematical and algorithms complexities. Despite the recent growth in the field, comprehensive resources are lacking to support DIP education. To address this gap, this paper introduces a practical course utilizing a Python library named morph.py designed for beginners and accessible on Google Colab. This interactive course employs illustrative examples and hands-on exercises to facilitate the learning of fundamental DIP concepts and operators. It begins with basic concepts (e.g., image representation) and progresses to more advanced topics, including image transformations and feature extraction. We conducted an exploratory case study in one group (N=15) and gathered their perception through a voluntary survey. Our quantitative analysis strongly supports our teaching method's effectiveness based on the morph.py library, which addresses the difficulties of teaching DIP to beginners.

Publisher

Sociedade Brasileira de Computação

Reference29 articles.

1. Gerald Jean Francis Banon and Junior Barrera. 1994. Bases da Morfologia Matemática para a análise de imagens binárias. UFPE-DI.

2. Olivier Cuisenaire. 1999. Distance transformations: fast algorithms and applications to medical image processing. Technical Report.

3. Edward R. Dougherty and Roberto de Alencar Lotufo. 2003. Hands-on morphological image processing. Vol. 59. SPIE press.

4. Rafael C Gonzalez and Richard C Woods. 2009. Processamento digital de imagens. Pearson Educación.

5. Muhammad Hussain. 2023. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. Machines 11, 7, 677.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3