Off-Topic Essay Detection: A comparative study on the Portuguese language

Author:

Passero Guilherme,Ferreira Rafael,Dazzi Rudimar Luís Scaranto

Abstract

Advances in automated essay grading over the last sixty years enabled its application in real scenarios, such as classrooms and high-stakes testing. The recognition of off-topic essays is one of the tasks addressed in automated essay grading. An essay is regarded as off-topic when the student does not develop the expected prompt-related concepts, sometimes purposely. Off-topic essays may receive a zero score in high-stake tests. An off-topic essay detection mechanism may be used in parallel or embedded in an automated essay grading system to improve its performance. In this context, the main goal of this study is to evaluate the existing approaches for automated off-topic essay detection. A previous systematic review of the literature showed some deficiencies in the state of the art, including: the low accuracy of current approaches, the use of artificial validation sets, and the lack of studies focused on the Portuguese language. In this study, the approaches found in the literature, originally proposed for the English language, were adapted for the Portuguese language and compared in an experiment using a public corpus of 2164 essays related to 111 prompts. The experiment used a set of artificial off-topic examples and the best performing algorithm achieved higher accuracy than that found in the literature for the English language (96.76% vs. 94.75%). The results presented suggest the application of off-topic essay detection mechanisms in the Brazilian educational context in order to benefit the student, with computer generated feedback, and educational institutions, regarding automated essay grading. Some suggestions for future research are presented, including the need to address the task of off-topic essay detection as a multiclass problem, and to reproduce the experiment with a larger and more representative set of real off-topic essay examples.

Publisher

Sociedade Brasileira de Computacao - SB

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3