Foveated Path Culling: A mixed path tracing and radiance field approach for optimizing rendering in XR Displays

Author:

Henriques HorácioORCID,Oliveira Alan deORCID,Oliveira EderORCID,Trevisan DanielaORCID,Clua EstebanORCID

Abstract

Real-time effects achieved by path tracing are essential for creating highly accurate illumination effects in interactive environments. However, due to its computational complexity, it is essential to explore optimization techniques like Foveated Rendering when considering Head Mounted Displays. In this paper we combine traditional Foveated Rendering approaches with recent advancements in the field of radiance fields, extending a previous work and including recent advancements based on Gaussian Splatting. The present paper proposes the usage of mixing real time path tracing at the fovea region of an HMD while replacing the images at the peripheral by pre-computed radiance fields, inferred by neural networks or rendered in real time due to Gaussian splats. We name our approach as Foveated Path Culling (FPC) due to the process of culling raycasts, diminishing the workload by replacing most of the screen raytracing tasks by a less costly approach. FPC allowed us for better frame rates when compared to purely path tracing while rendering scenes in real time, increasing the frame rate speedup proportionally to the display resolution. Our work contributes to the development of rendering techniques for XR experiences that demand low latency, high resolution and high visual quality through global illumination effects.

Publisher

Sociedade Brasileira de Computacao - SB

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3