Learning Self-distilled Features for Facial Deepfake Detection Using Visual Foundation Models: General Results and Demographic Analysis

Author:

Cunha Yan Martins Braz GurevitzORCID,Gomes Bruno RochaORCID,Boaro José Matheus C.ORCID,Moraes Daniel de SousaORCID,Busson Antonio José GrandsonORCID,Duarte Julio CesarORCID,Colcher SérgioORCID

Abstract

Modern deepfake techniques produce highly realistic false media content with the potential for spreading harmful information, including fake news and incitements to violence. Deepfake detection methods aim to identify and counteract such content by employing machine learning algorithms, focusing mainly on detecting the presence of manipulation using spatial and temporal features. These methods often utilize Foundation Models trained on extensive unlabeled data through self-supervised approaches. This work extends previous research on deepfake detection, focusing on the effectiveness of these models while also considering biases, particularly concerning age, gender, and ethnicity, for ethical analysis. Experiments with DINOv2, a novel Vision Transformer-based Foundation Model, trained using the diverse Deepfake Detection Challenge Dataset, which encompasses several lighting conditions, resolutions, and demographic attributes, demonstrated improved deepfake detection when combined with a CNN classifier, with minimal bias towards these demographic characteristics.

Publisher

Sociedade Brasileira de Computacao - SB

Reference58 articles.

1. Afchar, D., Nozick, V., Yamagishi, J., and Echizen, I. (2018). Mesonet: a compact facial video forgery detection network. In 2018 IEEE international workshop on information forensics and security (WIFS), pages 1–7. IEEE. DOI: https://doi.org/10.1109/WIFS.2018.8630761.

2. Almond Solutions (2021). Why do people post on social media. [link]. Accessed: 09 July 2024.

3. Beaumont-Thomas, B. (2024). Taylor swift deepfake pornography sparks renewed calls for us legislation. [link]. Accessed: 09 July 2024.

4. Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258. DOI: https://doi.org/10.48550/arXiv.2108.07258.

5. Bonettini, N., Cannas, E. D., Mandelli, S., Bondi, L., Bestagini, P., and Tubaro, S. (2021). Video face manipulation detection through ensemble of cnns. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 5012–5019. DOI: https://doi.org/10.1109/ICPR48806.2021.9412711.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3