Applying the Long-Term Memory Algorithm to Forecast Loss of Thermoregulation Capacity in Honeybee Colonies

Author:

Braga Antonio,Furtado Lia,Bezerra Antonio,Freitas Breno,Cazier Joseph,Gomes Danielo

Abstract

Bees are the main pollinators of most wild and cultivated plant species, thus being essential for the maintenance of plant ecosystems and for food production. But they are threatened due to a series of drivers such as pesticides, habitat loss and climate change. Here, we propose a method to iden- tify the loss of thermoregulation capacity in honeybee colonies. We applied the Long Short-Term Memory (LSTM) algorithm, which is based on Recurrent Neural Networks (RNN), to six real datasets of the Arnia remote hive monitoring system. From brood temperatures gathered along the European fall season in 2017, the LSTM was able to detect when a honeybee colony is about to lose its thermoregulation capacity. Our results showed an error of only 0.5% in predic- tion for well-thermoregulated beehives.

Publisher

Sociedade Brasileira de Computação - SBC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3