Reducing Persistence Overhead in Parallel State Machine Replication through Time-Phased Partitioned Checkpoint

Author:

Gomes Jr. EveraldoORCID,Alchieri EduardoORCID,Dotti FernandoORCID,Mendizabal Odorico MachadoORCID

Abstract

Dependable systems usually rely on replication to provide resilience and availability. However, for long-lived systems, replication is not enough since given a sufficient amount of time, there might be more faulty replicas than the threshold tolerated in the system. In order to overcome this limitation, checkpoint and recovery techniques are used to update and resume failed replicas. In this sense, checkpointing procedures periodically capture snapshots of the system state during failure-free execution, enabling recovery processes to resume from a previously stored and consistent state. Nevertheless, saving checkpoints introduces overhead, requiring synchronization with the processing of incoming requests to prevent inconsistencies. This overhead becomes even more pronounced in high-throughput systems like Parallel State Machine Replication, where workloads dominated by independent requests leverage multi-threading parallelism. This work addresses the costly nature of checkpointing by proposing a novel approach that divides the replica's state into partitions and takes snapshots of only a few partitions at a time. Replicas continue executing requests targeted to other partitions without interruption. Thus, incoming requests experience delays during a checkpoint only if they access a partition currently being saved. Combining this approach with the Parallel State Machine Replication yields reduced snapshot durations and lower client latency during checkpointing. Additionally, the proposed approach accelerates replicas recovery through collaborative state transfer, enabling workload distribution among replicas and parallel execution of transfer and installation of the recovering state.

Publisher

Sociedade Brasileira de Computacao - SB

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3