Design, Implementation and Evaluation of Core/Periphery-based Network-oriented Mixed Reality Services

Author:

Takagi Shiori,Arakawa Shin'ichi,Murata Masayuki

Abstract

Many new network-oriented services have been developed in recent years, and Multi-access Edge Computing (MEC) has been standardized to improve the responsiveness of services. When deploying services in a MEC environment, it is necessary to consider a service structure that can flexibly switch service behaviors to meet various user requests and that can change service behaviors according to the real-world environment at a low implementation cost. In this paper, we introduce a core/periphery structure for service components, which is known as a model for flexible behavior in biological systems, and design and implement a network-oriented mixed reality service based on this structure. We investigate what kinds of functions should be developed to accommodate user requests in conjunction with various types of devices and real-world environments in which users and devices are located. To utilize the flexibility of a core/periphery structure, we regard core functions as those whose behaviors remain unchanged even when there are changes in user requests or the environment. In contrast, peripheral functions are those whose behaviors can change under such circumstances. Experiments reveal that implementation costs are reduced while retaining increases in service response time to less than 31 ms. These results show that taking advantage of a core/periphery structure allows appropriate division of service functions and placement of functions in a MEC environment, with only small penalties on latency and at a low implementation cost.

Publisher

Sociedade Brasileira de Computacao - SB

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3