Abstract
This review article highlights the potential of flash sintering as a novel densification technology for advanced ceramics. Conventional ceramic sintering methods involve heating a powder compact at high temperatures for several hours to trigger the solid-state diffusion of atoms. In contrast, flash sintering takes advantage of electric field and current to drastically lower processing time and temperature, providing a promising solution to reduce the economic, energetic, and environmental costs associated with traditional ceramic sintering methods. The effects of electric field and current during flash sintering result in unique non-equilibrium microstructures that enhance the mechanical properties of advanced ceramics through defect-mediated inelastic deformation mechanisms. This article provides an overview of the flash sintering mechanisms, the unique microstructural features observed in flash-sintered ceramics, and their impacts on mechanical properties.
Funder
National Research Foundation of Korea
Ministry of Science and ICT
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献