Affiliation:
1. Lipetsk State Technical University
2. New University of Lisbon
3. Kazan State Energy University
Abstract
THE PURPOSE. In controlled AC drives used on continuous-action mechanisms, which include conveyors, conveyors, cranes, the most widespread are asynchronous motors with a phase rotor, controlled mainly along the rotor circuit using various regulators with low energy efficiency. To improve the energy efficiency of an electric drive based on ADFR, it is proposed to develop a control system that combines the principles of frequency control of the motor along the stator circuit and powering the rotor circuit with constant voltage, which allows the electric drive to be considered synchronized. METHODS. The presence of a DC link in the frequency converter makes it possible in principle to connect the rotor winding in series to this link. However, in order to ensure the frequency principle of regulating the output characteristics of the electric drive, it will be necessary to regulate the rectified current at the input of the inverter and, accordingly, in the rotor windings, which will require a significant change in the standard control system of the frequency converter. The use of an additional adjustable switch in the DC link is proposed. RESULTS. The study of the proposed non-standard control system for a frequency asynchronous synchronized electric drive was carried out by the method of simulation modeling in the Matlab Simulink software package. CONCLUSION. A control system for a frequency asynchronous synchronized electric drive has been developed and investigated on a computer model. A correction system is proposed that allows maintaining a constant value of the load angle in the starting mode. The scalar system of relay frequency control of the electric drive is supplemented with vector correction of the variables, which makes it possible to continuously provide the necessary mutual orientation of the stator current vectors and the rotor flux linkage.
Publisher
Kazan State Power Engineering University
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Reference19 articles.
1. Meshcheryakov VN. The systems of the adjustable asynchronous electric drive for hoisting-and-transport mechanisms. Lipetsk: LGTU Publ., 2005. 112 pp.
2. Gracheva EI, Gorlov AN, Shakurova ZM. Calculation of the economy of electric energy in industrial electrical supply systems. Power engineering: research, equipment, technology. 2020;22(2):65-74. https://doi.org/10.30724/1998-9903-2020-22-2-65-74.
3. Onishchenko GB, Yun'kov VYu. Osnovnye tendentsii razvitiya avtomatizirovannogo elektroprivoda. AEP 2016: Trudy 9 Mezhdunarodnoi (XX Vserossiiskoi) konferentsii po avtomatizirovannomu elektroprivodu. Perm', 2016. pp.81-83.
4. Gracheva EI, Shakurova ZM, Abdullazyanov RE. A comparative analysis of the most common deterministic methods for the calculation of electricity losses in industrial networks. Power engineering: research, equipment, technology. 2019;21(5):87-96. https://doi.org/10.30724//1998-9903-2019-21-5-87-96.
5. Meshcheryakov VN, Bashlykov AM. Sinkhronizirovannyi asinkhronnyi elektroprivod. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2010;3(4):101-104.