Research of the two-circuit combined-cycle cogeneration plant’s behavior according to the temperature chart

Author:

Treshchev D. A.1ORCID,Treshcheva M. A.1ORCID,Kolbantseva D. L.1ORCID,Kalyutik A. A.1ORCID

Affiliation:

1. Peter the Great St. Petersburg Polytechnic University

Abstract

THE PURPOSE. To consider the actual problem of determining the optimum value of the connected heat load to the cogeneration combined cycle gas turbine (CCGT) of the heat generation profile. METHHODS. Simulation modeling of operation modes using the "United Cycle" software is applied as a research method of the considered power unit operation. We studied several regimes of heat supply from the considered CCGTs during the heating period with the determination of integral annual indicators, as well as the relative fuel savings compared to the separate generation and the increase in the specific integral economic effect for different values of the cogeneration coefficient.RESULTS. We found that the optimal cogeneration coefficient for the object of study is 0.49. However, the value of the optimal cogeneration coefficient, determined by the condition of maximizing the specific integral economic effect for the object of research, is also 0.49. CONCLUSION. Determining the optimal unit commitment, which influences not only the initial investment, but also the expected operating (fuel) costs, is a pressing issue in power plant design. We present a basis for the possibility of using the indicator of relative fuel economy compared to separate generation as an optimization criterion. This parameter is widely used for optimization of combined heat and power units under conditions of planned economy. Under current economic conditions, it is possible to obtain a direct link between the incremental net discounted income from combined production and the relative fuel savings. This method can be used to analyze and optimize the mix of CCGT equipment regardless of geographical area, type of power system, energy resources cost, market conditions, as well as the characteristics of the used equipment.

Publisher

Kazan State Power Engineering University

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3