Numerical investigation of the thermal conductivity of a composite heat-insulating material with microgranules

Author:

Solovev S. A.1,Soloveva O. V.1,Akhmetova I. G.1,Vankov Y. V.1,Shakurova R. Z.1

Affiliation:

1. Kazan State Power Engineering University

Abstract

THE PURPOSE. To consider the problems that arise when creating a composite heatinsulating material, including a layer of microspherical granules. Numerical modeling of a composite material with different volume content of microspheres and different options for the formation of voids. Determination of the influence of the presence of zones not occupied by microgranules on the insulating properties of the composite material. Determination of the influence of the volume content of microspherical granules on the heat flux through the composite material.METHODS. Numerical simulation was carried out by creating models of elementary cubic cells of a composite with a package of 27 microspheres in the ANSYS Fluent 19.2 software package. The evaluation of the insulating properties was carried out by measuring the thermal conductivity coefficient.RESULTS. The article investigates the influence of the presence of zones not occupied by microspherical granules on the thermal insulation properties of a composite material. Models of elementary cubic cells with different volume content of microgranules are constructed. Models of elementary cells are built with various options for the formation of voids, such as the removal of a vertical or horizontal row of granules and the compaction of granules vertically or horizontally.CONCLUSION. The removal of microgranules has a significant effect on the insulating properties of the composite. The lowest thermal conductivity coefficient was obtained for a simple cubic cell with a volume content of microgranules φ = 40%. The presence of voids in the material contributes to large heat losses, and in the case of a vertical through channel, the heat losses are greater than for a horizontal through channel. In the case of densification of spheres, heat losses in the zone not occupied by microgranules are compensated by a decrease in the heat flux in the area with densification of spheres. 

Publisher

Kazan State Power Engineering University

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference24 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3