Optimization of energy balances of a photovoltaic power plant with electrochemical and thermal storage of solar energy

Author:

Lukutin B. V.1,Karrar Hameed Kadhim1

Affiliation:

1. National Research Tomsk Polytechnic University

Abstract

THE PURPOSE. Exploring the possibility of building hybrid power plants to reduce the shortage and cost of energy in Iraq through the combined use of solar electrochemical and thermal batteries.METHODS. Analytical methods in the field of construction of consumer energy supply systems from photovoltaic plants, methods of computer-mathematical modeling.RESULTS.The analysis of daily algorithms for the operation of a solar thermal energy supply system was carried out using the example of a social facility in Iraq using electrochemical and thermoelectric energy storage systems, taking into account the variation in the level of solar radiation, ambient temperature and energy consumption by seasons. An optimal algorithm for the conditions under study is proposed for the operation of the solar energy supply system and its elements. Methods for building an intelligent thermoelectric controller have been defined, which ensure the conversion of the maximum available energy of the PV power plant into thermal energy.CONCLUSION. It turns out that the proposed structure for the construction of photovoltaic power plants with combined storage of electricity is preferable to consumers with large thermal loads, because of the efficiency of direct conversion of electricity from photovoltaic modules to thermal energy is higher than the efficiency of thermal conversion through an intermediate link - an electrochemical battery. The paper proposes the principle of creating intelligent thermoelectric controllers, which ensure the operation of a photovoltaic power plant in maximum power mode.

Publisher

Kazan State Power Engineering University

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of virtual synchronous generator technology in power systems and its modeling in the Matlab software package;Power engineering: research, equipment, technology;2024-06-03

2. Prediction of electricity generation from res by machine learning methods;Power engineering: research, equipment, technology;2023-08-02

3. Development of laboratory unit of compressed air energy storage;Power engineering: research, equipment, technology;2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3