Bayesian classifier is the tool of increasing the efficiency of defects recognition in power transformers

Author:

Yahya А. A.1,Levin V. M.1ORCID

Affiliation:

1. Novosibirsk State Technical University

Abstract

The article considers the method of forming a statistical Bayesian classifier in relation to the problems of operational diagnostics and rapid evaluation of the technical condition of transformer equipment. It is proposed to use the classifier as a regular means to improve the reliability of defect recognition in power oil-filled transformers based on the analysis of dissolved gases in oil. A stochastic approach to the formation of the classifier in a conditions linearly realized dichotomy of technical status classes is developed. As a distinguishing feature, a nonlinear function of the primary parameters of state is used. This simultaneously achieves both a reduction in the dimension of the feature space and an improvement in the characteristics of the random distribution. The proposed approach allows to form a decisive rule that minimizes the total error of decision-making regardless of the impact on the object of random operational factors. The results of the study of stochastic properties of the distributions of the distinguishing feature for each of the selected classes of states are obtained. The algorithm to perform statistical calculations and procedures for recognizing the current state of the transformer using the generated decision rule is designed. The results of the study illustrate the possibility of practical application of the developed approach in the real exploitation of power transformers.

Publisher

Kazan State Power Engineering University

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference16 articles.

1. Zheleznov FD, Akulov VA, Plotnikov YuI et al. Metody i sredstva povysheniya dostovernosti ul'trafioletovoi diagnostiki izolyatsii kontaktnoi seti. Available at: www.panatest.ru/static?al=ultrafioletovaja-diagnostika-izoljacii-contaktnoj-seti. Accessed to: 28 Aug 2019.

2. Chernopazov MS, Mironov IS, Postanogov SA, et al. Povyshenie dostovernosti otsenki izmeryaemykh parametrov tekhnicheskogo sostoyaniya. 2015;3:24-29.

3. Kuznetsova MI, Kitaev SV. Povyshenie dostovernosti diagnostirovaniya tekhnicheskogo sostoyaniya gazoturbinnykh ustanovok. Transport i khranenie nefteproduktov i uglevodorodnogo syr'ya. 2014;3:25-28.

4. Agarkov SA, Vlasov AB, Yudin YuI. Sistema teplovizionnoi diagnostiki elektro- i teploenergeticheskogo oborudovaniya na sudakh i ob"ektakh beregovoi infrastruktury . Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Morskaya tekhnika i tekhnologiya. 2016;3:66-74.

5. Birger IA. Tekhnicheskaya diagnostika. M.: Mashinostroenie, 1978. P. 240.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote monitoring and control of the status of transformers in distribution electrical networks;Power engineering: research, equipment, technology;2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3