Abstract
A family $\mathcal{H}$ of sets is hereditary if any subset of any set in $\mathcal{H}$ is in $\mathcal{H}$. If two families $\mathcal{A}$ and $\mathcal{B}$ are such that any set in $\mathcal{A}$ intersects any set in $\mathcal{B}$, then we say that $(\mathcal{A}, \mathcal{B})$ is a cross-intersection pair (cip). We say that a cip $(\mathcal{A}, \mathcal{B})$ is simple if at least one of $\mathcal{A}$ and $\mathcal{B}$ contains only one set. For a family $\mathcal{F}$, let $\mu(\mathcal{F})$ denote the size of a smallest set in $\mathcal{F}$ that is not a subset of any other set in $\mathcal{F}$. For any positive integer $r$, let $[r] := \{1, 2, ..., r\}$, $2^{[r]} := \{A \colon A \subseteq [r]\}$, $\mathcal{F}^{(r)} := \{F \in \mathcal{F} \colon |F| = r\}$. We show that if a hereditary family $\mathcal{H} \subseteq 2^{[n]}$ is compressed, $\mu(\mathcal{H}) \geq r+s$ with $r \leq s$, and $(\mathcal{A}, \mathcal{B})$ is a cip with $\emptyset \neq \mathcal{A} \subset \mathcal{H}^{(r)}$ and $\emptyset \neq \mathcal{B} \subset \mathcal{H}^{(s)}$, then $|\mathcal{A}| + |\mathcal{B}|$ is a maximum if $(\mathcal{A}, \mathcal{B})$ is the simple cip $\left( \{[r]\}, \{B \in \mathcal{H}^{(s)} \colon B \cap [r] \neq \emptyset\} \right)$; Frankl and Tokushige proved this for $\mathcal{H} = 2^{[n]}$. We also show that for any $2 \leq r \leq s$ and $m \geq r + s$ there exist (non-compressed) hereditary families $\mathcal{H}$ with $\mu(\mathcal{H}) = m$ such that no cip $(\mathcal{A}, \mathcal{B})$ with a maximum value of $|\mathcal{A}| + |\mathcal{B}|$ under the condition that $\emptyset \neq \mathcal{A} \subset \mathcal{H}^{(r)}$ and $\emptyset \neq \mathcal{B} \subset \mathcal{H}^{(s)}$ is simple (we prove that this is not the case for $r=1$), and we suggest two conjectures about the extremal structures in general.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献