Extensions of Infinite Partition Regular Systems

Author:

Hindman Neil,Leader Imre,Strauss Dona

Abstract

A finite or infinite matrix $A$ with rational entries (and only finitely many non-zero entries in each row) is called image partition regular if, whenever the natural numbers are finitely coloured, there is a vector $x$, with entries in the natural numbers, such that $Ax$ is monochromatic. Many of the classicial results of Ramsey theory are naturally stated in terms of image partition regularity.Our aim in this paper is to investigate maximality questions for image partition regular matrices.  When is it possible to add rows on to $A$ and remain image partition regular? When can one add rows but `nothing new is produced'? What about adding rows and also new variables? We prove some results about extensions of the most interesting infinite systems, and make several conjectures.Our most surprising positive result is a compatibility result for Milliken-Taylor systems, stating that (in many cases) one may adjoin one Milliken-Taylor system to a translate of another and remain image partition regular. This is in contrast to earlier results, which had suggested a strong inconsistency between different Milliken-Taylor systems. Our main tools for this are some algebraic properties of $\beta {\mathbb N}$, the Stone-Čech compactification of the natural numbers.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Ramsey characterisation of eventually periodic words;Bulletin of the London Mathematical Society;2022-07-12

2. A history of central sets;Ergodic Theory and Dynamical Systems;2018-06-04

3. Ramsey properties of nonlinear Diophantine equations;Advances in Mathematics;2018-01

4. Fermat-Like Equations that are not Partition Regular;Combinatorica;2017-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3