Abstract
Let $X$ be a graph on $n$ vertices with adjacency matrix $A$ and let $H(t)$ denote the matrix-valued function $\exp(iAt)$. If $u$ and $v$ are distinct vertices in $X$, we say perfect state transfer from $u$ to $v$ occurs if there is a time $\tau$ such that $|H(\tau)_{u,v}|=1$. If $u\in V(X)$ and there is a time $\sigma$ such that $|H(\sigma)_{u,u}|=1$, we say $X$ is periodic at $u$ with period $\sigma$. It is not difficult to show that if the ratio of distinct non-zero eigenvalues of $X$ is always rational, then $X$ is periodic. We show that the converse holds, from which it follows that a regular graph is periodic if and only if its eigenvalues are distinct. For a class of graphs $X$ including all vertex-transitive graphs we prove that, if perfect state transfer occurs at time $\tau$, then $H(\tau)$ is a scalar multiple of a permutation matrix of order two with no fixed points. Using certain Hadamard matrices, we construct a new infinite family of graphs on which perfect state transfer occurs.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献