A Graph Theory of Rook Placements
-
Published:2021-10-22
Issue:4
Volume:28
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
Two boards are rook equivalent if they have the same number of non-attacking rook placements for any number of rooks. Define a rook equivalence graph on an equivalence class of Ferrers boards by specifying that two boards are connected by an edge if you can obtain one of the boards by moving squares in the other board out of one column and into a single other column. Given such a graph, we characterize which boards will yield connected graphs. We also provide some cases where common graphs will or will not be the graph for some set of rook equivalent Ferrers boards. Finally, we extend this graph definition to the m-level rook placement generalization developed by Briggs and Remmel. This yields a graph on the set of rook equivalent singleton boards, and we characterize which singleton boards give rise to a connected graph.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics