Abstract
Let ${\cal C}(d,n)$ denote the set of $d$-dimensional lattice paths using the steps $X_1 := (1, 0, \ldots, 0),$ $ X_2 := (0, 1, \ldots, 0),$ $\ldots,$ $ X_d := (0,0, \ldots,1)$, running from $(0,\ldots,0)$ to $(n,\ldots,n)$, and lying in $\{(x_1,x_2, \ldots, x_d) : 0 \le x_1 \le x_2 \le \ldots \le x_d \}$. On any path $P:=p_1p_2 \ldots p_{dn} \in {\cal C}(d,n)$, define the statistics ${\rm asc}(P) := $$|\{i : p_ip_{i+1} = X_jX_{\ell}, j < \ell \}|$ and ${\rm des}(P) := $$|\{i : p_ip_{i+1} = X_jX_{\ell}, j>\ell \}|$. Define the generalized Narayana number $N(d,n,k)$ to count the paths in ${\cal C}(d,n)$ with ${\rm asc}(P)=k$. We consider the derivation of a formula for $N(d,n,k)$, implicit in MacMahon's work. We examine other statistics for $N(d,n,k)$ and show that the statistics ${\rm asc}$ and ${\rm des}-d+1$ are equidistributed. We use Wegschaider's algorithm, extending Sister Celine's (Wilf-Zeilberger) method to multiple summation, to obtain recurrences for $N(3,n,k)$. We introduce the generalized large Schröder numbers $(2^{d-1}\sum_k N(d,n,k)2^k)_{n\ge1}$ to count constrained paths using step sets which include diagonal steps.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chain algebras of finite distributive lattices;Journal of Algebraic Combinatorics;2024-02-06
2. Recurrences for Callan’s Generalization of Narayana Polynomials;Journal of Systems Science and Complexity;2021-06-28
3. Rigged Configurations and Unimodality;Representation Theory, Mathematical Physics, and Integrable Systems;2021
4. Hilbert series of the Grassmannian and k-Narayana numbers;Communications in Mathematics;2019-06-01
5. Trapezoidal Diagrams, Upward Triangulations, and Prime Catalan Numbers;Discrete & Computational Geometry;2017-06-02